If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x+20=3
We move all terms to the left:
x^2-18x+20-(3)=0
We add all the numbers together, and all the variables
x^2-18x+17=0
a = 1; b = -18; c = +17;
Δ = b2-4ac
Δ = -182-4·1·17
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-16}{2*1}=\frac{2}{2} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+16}{2*1}=\frac{34}{2} =17 $
| 8x^2-12x=4x | | -(m-90)=52 | | 10x-4+36-5x=42 | | 22=5(y+8) | | -10n=200 | | 40+(2×19)=y | | –4y+5=17 | | 1.9+2.5n=3.4n-1.7 | | Y=75-3x | | 759=23z | | 3/5m+1=11 | | -(2/3)x^2-19=-35 | | 120-50=x | | D(3d+5)=2 | | 25x-4x=50 | | –6=v–3+ –7 | | 3(h-73)=24 | | 4x11=44 | | 120+50=x | | 157=-4(-5x-1)-7 | | -90=5x+10 | | t+9=100 | | 7x+5=3(2x+3)+x-4 | | x-11=x-5 | | 1x+(1x+30)+2x=180 | | 59=5s-31 | | j+26=91 | | 6x-1=4(x+5.5)-7.6 | | -5+8×-9=3(x+3) | | 2X+20+210-4x=180 | | 175m-125m+43,650=45675-175m | | -2(k-5)=2k=5k+5 |